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ABSTRACT
With the rapid proliferation of the Internet of Things, video analyt-
ics has become a cornerstone application in wireless multimedia
sensor networks. To support such applications under bandwidth
constraints, learning-based adaptive quantization for video com-
pression have demonstrated strong potential in reducing bitrate
while maintaining analytical accuracy. However, existing frame-
works often fail to fully exploit the fine-grained quality control
enabled by modern blockbased video codecs, leaving significant
compression efficiency untapped.

In this paper, we present How2Compress, a simple yet effec-
tive framework designed to enhance video compression efficiency
through precise, fine-grained quality control at the macroblock level.
How2Compress is a plug-and-play module and can be seamlessly
integrated into any existing edge video analytics pipelines. We
implement How2Compress on the H.264 codec and evaluate its
performance across diverse real-world scenarios. Experimental re-
sults show that How2Compress achieves up to 50.4% bitrate savings
and outperforms baselines by up to 3.01× without compromising
accuracy, demonstrating its practical effectiveness and efficiency.
Code is available at link and a reproducible docker image at link.

1 INTRODUCTION
Video analytics has emerged as a critical application in edge com-
puting, enabling intelligent services such as traffic management [12,
21, 32, 42] and urban surveillance [1, 11, 41, 46, 62]. As illustrated
in Fig. 1, typical edge video analytics systems compress video data
at edge cameras and offload it to nearby edge clusters for infer-
ence [15, 33, 35, 36, 62, 69, 70]. These systems must operate under
stringent bandwidth constraints and fluctuating scene complexi-
ties [12, 42, 62, 69], while simultaneously adhering to strict Service
Level Objectives (SLOs) that demand both high inference accuracy
and low end-to-end latency [4, 15, 33, 36, 42, 62, 69]. To meet these
requirements, video compression becomes a critical enabler. To
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Figure 1: Machine-centric video compression is a key compo-
nent to unleash wireless sensor network efficiency.

meet these requirements, video compression becomes a critical en-
abler. However, there is a key misalignment in current edge video
analytics system. Video codec is primarily designed for human vi-
sual perception and often overlook semantically important features
that are essential for machine-centric analytics tasks.

To address this gap, prior work has explored machine-centric
adaptive quality assignment [15, 62, 67, 69], differing in spatial
granularity. As shown in Fig. 2, Frame-level methods [62, 69] ap-
ply a uniform Quantization Parameter (QP) per frame, deciding
when to compress based on global scene importance. In contrast,
macroblock-level methods [15, 67] distinguish salient from non-
salient regions, assigning binary (high/low) QPs per macroblock to
decide where to compress. Modern codecs [18, 22, 44, 49, 59, 61],
however, support multi-level QP control at the macroblock level,
enabling finer-grained and more expressive quality modulation. Yet,
the exponentially large decision space at this scale poses a signifi-
cant challenge, limiting existing methods from fully leveraging the
codec’s configurability.
Goal and Insight. In this work, we aim to improve video com-
pression through fine-grained macroblock-level quality assignment
while preserving downstream analytical accuracy. Our key insight
is that macroblocks contribute unequally to analytical performance
and exhibit content-dependent resilience to compression. By explor-
ing this variability, we can assign just enough quality to each mac-
roblock (how to compress), minimizing bitrate without sacrificing
accuracy. Specifically, in this paper, we first assign a low QP as a
base and then selectively apply fine-grained emphasis (QP offset) to

https://github.com/wyhallenwu/how2compress
https://hub.docker.com/r/wuyuheng/how2compress
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Category Framework Macroblock-level
Assignment

Fine-grained
Assigment

Low Training
Overhead∗

Low Inference
Overhead∗†

Machine-
Centric

Uniform QP
(When2Compress)

CASVA [69] ✗ ✓ ✗ ✓ ✓

ILCAS [62] ✗ ✓ ✓ ✗ ✓

Coarse-grained
(Where2Compress) AccMPEG [15] ✓ ✗ ✗ ✗ ✓

Adaptive Quant
(Codec AQ)

Blockbased Codec [2, 9, 18, 22, 49, 61]
(H.264, H.265, H.266, VP9, AV1) ✓ ✓ / / ✗

Fine-grained
(How2Compress) How2Compress (Ours) ✓ ✓ ✓ ✓ ✓

∗ evaluated on 1080p resolution videos
† e2e overhead latency ≤ 33.3ms (30fps) on the edge-level device (e.g., Nvidia Jetson Orin Nano)

Figure 2: Comparison between our proposed framework and prior works. How2Compress is a superset of bothWhen2Compress
andWhere2Compress. Each macroblock is 16 × 16 pixels.

adjust macroblock-level quality. We refer to the optimal emphasis
decision for each macroblock as golden emphasis.
Challenges. We identify two key and non-trivial challenges:

1)How canwe determine a content adaptive but task agnos-
tic signal? Each macroblock contributes differently to downstream
task performance, depending on its content and context. This cre-
ates a local-to-global optimization problem, where per-macroblock
quality decisions collectively influence frame-level detection accu-
racy. However, the relationship between local quality and global
task utility is non-linear and content-dependent, making it infeasi-
ble to predetermine macroblock importance through deterministic
heuristics [25, 67].

2) How can we efficiently navigate quality assignment
in the exponential decision space? Encoding a 1080p frame
involves ∼ 8160 macroblocks (𝑀), each with 𝑁 (e.g., 5) possible
emphasis levels. This leads to an exponential decision space of size
𝑁𝑀 . A natural formulation is to treat this as a Markov Decision Pro-
cess (MDP) and use planning or RL to discover optimal emphasis
assignments. However, this approach faces three major difficul-
ties: 1) Long-horizon decisions [16, 38, 48], where a full sequence
of 8160 decisions must be made before evaluating the outcome. 2)
Sparse reward signal [43, 47, 64, 65], as performance feedback is
only available after the entire assignment is completed. 3) Expen-
sive exploration, exploring such a large space requires extensive
trial-and-error, yet the encoding process is computationally expen-
sive. The inefficiency and scalability bottlenecks of MDP-based
approaches in our setting necessitate a different solution strategy.
Proposed Framework. In this paper, we propose How2Compress,
a self-supervised video compression framework that performs fine-
grained quality assignment at the macroblock level. Rather than
formulating emphasis assignment as a sequential decision-making
problem, How2Compress reframes it as a segmentation task, which
enables parallel and scalable inference. The core component of
How2Compress is the Region-aware Emphasis Routing (RER) mod-
ule, which predicts the optimal quality emphasis for each mac-
roblock without requiring manual labels or exhaustive preprofil-
ing [67]. RER is co-trained with a proxy emphasis target, which
serves as a dynamic pseudo-label that evolves based on downstream
task feedback and spatiotemporal priors. This co-evolutionary train-
ing strategy allows the emphasis assignment model to efficiently

explore the quality assignment space and converge toward high-
utility compression strategies.

We integrate How2Compress as a plug-and-play module into the
standard H.264 pipeline, which is the most widely adopted codec
in practical edge deployments, and validate its performance across
diverse real-world settings.
Contributions. Our main contributions are as follows:
1) We introduce the Proxy Emphasis Target, a dynamic supervi-
sory signal that evolves during training and enables fine-grained
quality assignment without relying on pre-profiling.
2) We designRegion-aware Emphasis Routing, a self-supervised
module that exploits spatial and temporal priors to efficiently assign
compression quality across macroblocks in an exponential decision
space.
3) We integrate How2Compress into the H.264 codec and demon-
strate up to 50.4% bitrate reduction and a 3.01× improvement over
state-of-the-art baselines, with negligible computational overhead
on edge hardware.

2 BACKGROUND
How2Compress is designed to be codec-agnostic, provided the
codec supports encoding pixel blocks at varying quality levels (e.g.,
H.264 [61], H.265 (HEVC) [49], VP8 [44], VP9 [22], H.266 (VVC) [59]
and AV1 [18]). In this paper, we integrate How2Compress with the
H.264 codec and evaluate it on object detection, tracking and key-
point detection (pose estimation). Both are most common practice
in edge computing. To motivate our design, we first analyze the
compression mechanism of H.264, and then examine the limitations
of prior approaches in enabling fine-grained quality control at the
macroblock level.

2.1 Preliminaries on Video Compression
Video compression aims to reduce spatial and temporal redundan-
cies while preserving visual quality. The encoding process of H.264
consists of three main stages. First, each frame is typically divided
into 16×16 macroblocks. Each macroblock is predicted using either
intra (within the current frame) or inter (motion-compensated from
reference frames) modes. The difference between the predicted and
actual macroblock forms the residual. Next, the residual undergoes
a Discrete Cosine Transform (DCT), converting the data from the
spatial domain to the frequency domain, concentrating the energy
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Figure 3: Samples from MOT dataset (a-d). Bitrate savings
over raw video using human-centric fine-grained (e) and
machine-centric coarse-grained (f) compression.

into fewer significant coefficients. Quantization is then applied to
these coefficients, where they are divided by a quantization step,
reducing precision. The degree of quantization is controlled by the
QP, allowing a balance between compression efficiency and qual-
ity at the macroblock level. Finally, the quantized coefficients are
further compressed through lossless entropy coding.

2.2 Related Work
Prior efforts to reduce bandwidth in video analytics span three
main strategies: (1) spatial pruning (e.g., cropping RoIs)[3, 35, 55,
66, 70, 72], (2) temporal pruning (e.g., frame filtering or semantic
skipping)[26, 34, 36], and (3) tuning global quality knobs (e.g., fram-
erate, resolution, CRF) [62, 69]. While effective, these approaches
are often tightly coupled to specific downstream models or system
pipelines, limiting their generalizability.

In contrast, our work focuses solely on fine-grained quality as-
signment which adjusts macroblock-level QP to reduce bitrate while
remaining agnostic to downstream tasks and models. This strategy
can be easily integrated with other system-level optimizations for
additional gains.
#When2Compress: Frame-level quality assignment. Methods
like CASVA [69] and ILCAS [62] dynamically adjust frame-level
video settings (e.g., resolution, framerate, QP) to balance latency and
accuracy. However, they lack spatial granularity, often preserving
high-quality macroblocks that are irrelevant to task performance,
resulting in inefficient compression.
#Where2Compress: Region- or Macroblock-level quality as-
signment. The most closely related work to ours is research that
has explored quality assignment at the macroblock level [15, 67].
Compared to frame-level approaches, this method offers significant
advantages. Ideally, it allows for reducing the quality ofmacroblocks
that are not directly associated with performance, while assigning
necessary higher quality to those that influence the performance.
Despite this potential, existing approaches fall short, failing to fully
exploit the granular quality levels available at the macroblock level.
For instance, AccMPEG [15] estimates the impact of each mac-
roblock on accuracy and assigns quality based on its importance.
But its reliance on an accuracy gradient limits the quality assign-
ment to a coarse binary decision (i.e., high (QP 30) or low (QP 40)),
thereby underutilizing the codec’s full range of quantization levels.

AccelIR [67] targets on image restoration and conducts exhaustive
pre-profiling of the benefit of each macroblock. While effective in
restoration tasks, this approach is impractical for analytics tasks,
where complex local-to-global dependencies cannot be captured by
such pre-profiling.

3 MEASUREMENT STUDY
Experimental Setup. All measurement experiments are conducted
on NVIDIA RTX 3090 GPU. For video encoding, we use FFMPEG
with libx264 [17]. To explore macroblock-level fine-grained qual-
ity adjustments, we activate the AQ mode in the variance setting,
which enables dynamic refinement of the QP at macroblock level
based on content variance. Each video chunk has a framerate of 30
FPS and a GOP size of 30, consisting of 1 I-frame and up to 3 con-
secutive B-frames per group. Four representative video sequences
from the MOT dataset [40] are selected as shown in Fig. 3(a-d) to
represent a diverse range of conditions, including varying view
angles (horizontal vs. vertical), object density (number of objects
in a frame), luminance levels (daytime vs. nighttime), and camera
dynamics (stationary vs. moving). To ensure a robust comparison,
we first conduct a thorough search of the frame-level QP for each
video sequence, identifying the highest QP value. Raw videos are
encoded at QP 25 and all parameters are optimized to ensure that
accuracy fluctuations remain within a margin of 2%.
Observation #1: Human-centric fine-grained AQ improves
compression but struggles with content dynamics. As shown
in Fig. 3e, our results indicate that H.264’s built-in AQ enables more
aggressive compression while maintaining comparable accuracy.
However, its effectiveness diminishes in videos containing large,
low-complexity flat regions (e.g., Fig. 3b), where visual quality is
more sensitive to degradation and thus requires additional bits
to preserve perceptual fidelity. This limitation stems from AQ’s
original design [53], which prioritizes human visual perception
rather than task-relevant machine perception. As a result, it may
allocate bits inefficiently from an analytics perspective.
Observation #2: Potential of machine-centric, finer-grained
macroblock-level quality assignment is promising but re-
mains underexplored. As shown in Fig. 3f, machine-centric coarse-
grained methods (i.e., AccMPEG) even fail to outperform built-in
codec’s AQ. This inefficiency underscores an untapped opportunity
for macroblock-level, task-aware quality assignment to enhance
both compression efficiency and task accuracy.
Motivation. These observations reveal a critical gap: existing built-
in AQ techniques are misaligned with the needs of video analytics,
and coarse-grained approaches fail to leverage the codec’s expres-
sive capabilities. This motivates our design of a machine-centric,
fine-grained macroblock-level quality assignment framework.

4 PROBLEM FORMULATION
Given an input image of resolution (𝐻,𝑊 ), we divide it into a
grid of 𝑛𝑤 × 𝑛ℎ non-overlapping macroblocks, where 𝑛𝑤 =

⌈
𝐻
16
⌉

and 𝑛ℎ =
⌈
𝑊
16
⌉
. Each macroblock covers a region of 16 × 16 pixels.

Instead of predicting a unique QP for each macroblock, we employ
a fixed base QP (i.e., 45 in our setup) and assign an emphasis level
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Figure 4: Overview of How2Compress.

𝑞𝑖, 𝑗 ∈ {0, 1, 2, 3, 4} to each macroblock 𝑀𝑖, 𝑗
1. This emphasis level

serves as a proxy for quality refinement: a higher 𝑞𝑖, 𝑗 implies a
more negative offset to the base QP, thus improving the quality of
that macroblock.

We define the resulting emphasis configuration over the frame as
an emphasismap 𝐸𝑀 ∈ R𝑛𝑤×𝑛ℎ , where each entry 𝐸𝑀 (𝑖, 𝑗) denotes
the emphasis level assigned to macroblock𝑀𝑖, 𝑗 . The optimization
objective is to reduce the total emphasis cost (a surrogate for bitrate)
while maintaining the application-level accuracy within a margin 𝜏
of the ground-truth performance under maximum quality. Formally,
the objective is:

max
q

E[𝐴(q)] s.t.
𝑛𝑤∑︁
𝑖=1

𝑛ℎ∑︁
𝑗=1

𝐸𝑀 (𝑖, 𝑗) is minimized,

and |E(𝐴(q)) − E(𝐺) | ≤ 𝜏,
(1)

Here, 𝐴(q) denotes the application-level accuracy for frames
decoded using the predicted emphasis map q, while E(𝐺) is the
reference accuracy computed from frames encoded at the highest
possible quality. The constraint ensures that the degradation in
accuracy remains within an acceptable bound 𝜏 . Intuitively, the goal
is to learn an emphasis assignment strategy that minimally allocates
quality to accuracy-insensitive macroblocks, while preserving or
boosting quality in regions critical to the application’s performance.

5 METHODOLOGY
Overview. As shown in Fig. 4, How2Compress consists of two
stages: (a) online deployment and (b) offline training via Region-
aware Emphasis Routing. In the deployment stage (Fig. 4a), the Em-
phasis Assignment (EA) Model (§5.1) predicts macroblock-level em-
phasis in parallel, producing an emphasis map. This map guides QP
refinement to control bitrate. The encoded video is then offloaded
to a nearby edge server for inference. During training (Fig. 4b), we
first sample representative frames and compress them at the lowest
quality to estimate per-macroblock SSIM. Based on this, two proxy
emphasis thresholds are derived to guide the exploration 1 . The
EA map is then partitioned into RoI and Background regions 2 ,
enabling the Region-aware Emphasis Routing (RER) module (§5.2)

1This formulation is designed to be compatible with the Emphasis Map feature of
NVIDIA’s Video Codec SDK [8]. (More design rationale in Appendix A.2)

A B C D
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A
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B

C D

DC
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# OBS.1: most MBs are resilient

Push all MBs to lowest 
QP but more than 50% 
preserve >90% SSIM

# OBS.2: RoIs are more sensitive

25%

11%

Figure 5: Design motivation: (a) Different macroblocks ex-
hibit varying resilience to compression based on content
characteristics. (b) Macroblocks in RoI are more sensitive.

to apply region-aware exploration 3 , generating a proxy empha-
sis target that evolves over iterations. This proxy target serves as
adaptive supervision 4 , encouraging the model to assign lower
quality to non-informative regions while preserving task-relevant
details. Through iterative updates, the EA Model learns to make
fine-grained, task-aware quality decisions.

5.1 Emphasis Assignment Model (EA Model)
As discussed in §1, similar to the approach in [15], the emphasis
assignment problem can be cast as a segmentation task, where each
16×16macroblock serves as an independent prediction unit. Solving
this task requires two core capabilities: 1) the ability to capture both
short-range and long-range semantic context [5, 50, 63], and 2) the
computational efficiency necessary for real-time inference on edge
devices (e.g., sustaining about 30fps even for high-resolution inputs
such as 1080p) [15, 67, 69]. Therefore, the backbone network must
strike a balance between computational efficiency and performance.

To this end, How2Compress is designed to be backbone-agnostic
as long as the model meets above requirements. Leveraging recent
advancements in lightweight architectures [5, 6, 14, 37, 39, 52, 63,
71, 74], we adopt MobileViT v2 as our backbone due to two key
advantages: 1) 16 × 16 pixel macroblocks aligns naturally with the
patch-based design of vision transformers backbones, facilitating
the modeling of relationships between these macroblocks and 2)
its optimization tailored to mobile platforms. The Emphasis As-
signment Model is trained offline on a centralized server using
pre-encoded videos and distributed to edge devices for deployment.



How2Compress: Scalable and Efficient Edge Video Analytics via Adaptive Granular Video Compression

Table 2: Notation used in Region-aware Emphasis Routing

Symbol Description

𝐼𝑟 , 𝐼𝑐 Raw and compressed input frames
𝑟𝑎𝑤_𝑚𝑏, 𝑙𝑜𝑤_𝑚𝑏 Macroblocks from 𝐼𝑟 and 𝐼𝑐
𝐸𝑀 Emphasis Assignment model
𝑒𝑚[𝑖, 𝑗] Predicted emphasis level at macroblock (𝑖, 𝑗)
𝑝𝑟𝑜𝑥𝑦_𝑒𝑚[𝑖, 𝑗] Proxy target emphasis at macroblock (𝑖, 𝑗)
𝑝 Exploration probability
𝜏𝑟𝑜𝑖 , 𝜏𝑏𝑔 Thresholds for RoI and BG macroblocks
E(𝑎, 𝑏) Exponential sampling between 𝑎 and 𝑏
𝐴𝑐𝑐𝑟 , 𝐴𝑐𝑐𝑐 Accuracy on raw and compressed input
𝜆1, 𝜆2 Weights for loss terms
𝑝𝑒𝑛𝑎𝑙𝑡𝑦 Scaling factor for alignment loss

5.2 Region-aware Emphasis Routing (RER)
Region-aware Emphasis Routing (RER) is a simple yet effective mech-
anism for fine-grained, macroblock-level emphasis assignment in
video compression. It is designed to tackle two key challenges
outlined in §1: C1: how to determine a content-aware but task-
agnostic proxy emphasis target for each macroblock, and C2: how
to efficiently navigate the large decision space of possible empha-
sis configurations. To address these challenges, RER builds on the
exploration-exploitation paradigm, with two core designs that ac-
celerate and structure this process: (1) Proxy Emphasis Threshold,
which narrows the exploration area by filtering out trivially sat-
urated macroblocks. (2) Region-aware Exploration, which focuses
exploration differently across foreground (RoI) and background
regions to efficiently search the QP assignment space. To further
improve training efficiency, we utilize hardware-optimized codec
implementations during offline training. We ensure that the QP
assignment behavior is aligned with standard codec semantics,
enabling seamless deployment across heterogeneous edge devices.

5.2.1 Proxy Emphasis Threshold (PET).
Challenge #1:How to identify a content-aware yet task-agnostic
supervisory signal? In real-world scenarios, switching between
tasks or analytical models is common. To accommodate this, we
seek a supervision strategy that remains broadly applicable across
diverse tasks and models, without requiring task-specific annota-
tions or retraining.
Observation #1: Structural and textural information is gener-
ally useful, and most macroblocks are resilient to compres-
sion. Prior studies [13, 19, 20, 27, 29, 45, 51, 68] emphasize that
preserving fine-grained structural and textural details is essential
for sustaining the performance of downstream tasks such as object
detection. Motivated by this, our design aims to retain such cues
during compression. To approximate their preservation, we adopt
SSIM [58] as a proxy, recognizing that while it does not perfectly
capture task relevance, it provides a reasonable content-aware sig-
nal. Importantly, the overall compression extent is ultimately guided
by downstream task performance (see Appendix E). Furthermore,
as shown in Fig. 5a, we observe that even when macroblocks are
compressed at the lowest quality, a substantial portion of structural
cues remains intact. This suggests that many macroblocks are in-
herently resilient to aggressive compression. This insight enables

Algorithm 1: Proxy Emphasis Threshold
Input : 𝐼𝑟 , 𝐼𝑐 , 𝑟𝑎𝑤_𝑚𝑏, 𝑙𝑜𝑤_𝑚𝑏, 𝐸𝑀 , 𝑒𝑚
Config :𝜏𝑟𝑜𝑖 , 𝜏𝑏𝑔

1 Function ProxyEmphasisThreshold(𝐼𝑟 , 𝐼𝑐):
2 // SSIM threshold for RoI and BG

3 D← [ ];
4 for 𝑖 = 0, 1, . . . do
5 for 𝑗 = 0, 1, . . . do
6 𝐷 ← 𝐷 ∪ {SSIM(𝑟𝑎𝑤_𝑚𝑏 [𝑖, 𝑗], 𝑙𝑜𝑤_𝑚𝑏 [𝑖, 𝑗])};

7 𝐷 ← sort(𝐷);
8 return 𝐷 [𝜏𝑟𝑜𝑖 ], 𝐷 [𝜏𝑏𝑔];

us to shrink the exploration space by focusing efforts on the smaller
subset of MBs that are more sensitive to quality loss.
Design #1: Proxy Emphasis Threshold. To operationalize this
insight, we introduce the Proxy Emphasis Threshold mechanism. As
shown in Algorithm 1 and Fig. 4, we begin by compressing a repre-
sentative raw frame to its lowest quality and compute SSIM scores
for each macroblock to estimate its compression resilience 1 .
These scores are sorted to define two percentile-based thresholds:
one for regions of interest (RoI) and another for background (BG)
regions. The thresholds determine which macroblocks are struc-
turally important and guide the quality assignment during training,
encouraging higher quality (lower QP) for RoI and more aggressive
compression for resilient background blocks 3 later.

This threshold-driven process provides a content-aware and task-
agnostic supervisory signal, enabling adaptive bitrate allocation
without exhaustive search. Moreover, to ensure computational ef-
ficiency, this profiling step is performed only once on a small set
of representative frames. The resulting thresholds are then reused
across the video stream, taking advantage of the spatial and tempo-
ral redundancy common in edge video streams.

5.2.2 Region-aware Dual Exploration.
Challenge #2: How to efficiently explore and exploit the mac-
roblock decision space? Not all macroblocks contribute equally
to accuracy. Efficient exploration requires a strategy that adapts
emphasis decisions based on the task relevance of each macroblock,
ensuring computational effort is directed where it matters most.
Observation #2: RoI MBs are generally more critical than
those in Background. Empirical analysis (Fig. 5b) shows that
compression artifacts in RoI regions significantly degrade accuracy,
while aggressive compression in BG regions has less effect. Priori-
tizing RoI macroblocks during exploration can potentially improve
efficiency and accuracy retention.
Design #2: Region-aware Dual Exploration Strategy. To ac-
celerate macroblock-level search, we adopt a region-aware dual
exploration strategy that treats RoI and BG macroblocks differently.
RoI regions, typically more critical for analysis, are guided toward
higher quality via upward sampling, while BG regions are steered
toward more aggressive compression 2 .

This region-aware design serves only as a heuristic to improve
exploration efficiency. It remains broadly applicable across diverse
tasks, as RoI-like regions (e.g., objects, humans) tend to be struc-
turally important regardless of the specific objective (e.g., detection,
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Algorithm 2: Region-aware Emphasis Routing
Input : 𝐼𝑟 , 𝐼𝑐 , 𝑟𝑎𝑤_𝑚𝑏, 𝑙𝑜𝑤_𝑚𝑏, 𝐸𝑀 , 𝑒𝑚
Config :𝑝 , 𝜏𝑟𝑜𝑖 , 𝜏𝑏𝑔 , 𝜆1, 𝜆2, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

1 Function RegionAwareEmphasisRouting(𝐼𝑟 , 𝐼𝑐):
2 // efficiently explore decision space

3 𝜏𝑟𝑜𝑖 , 𝜏𝑏𝑔 ← ProxyEmphasisThreshold(𝐼𝑟 , 𝐼𝑐 );
4 repeat
5 𝑒𝑚[𝑖, 𝑗] ← 𝐸𝑀 (𝐼𝑟 );
6 // Dual-Exploration for RoI mb

7 for𝑚𝑏 ∈ 𝑅𝑜𝐼 do
8 if 𝑝′ ∼ U < 𝑝 ∧ 𝑒𝑚[𝑖, 𝑗] ≤ 𝜏𝑟𝑜𝑖 then
9 𝑝𝑟𝑜𝑥𝑦_𝑒𝑚[𝑖, 𝑗] ← E ((𝑒𝑚[𝑖, 𝑗], ℎ𝑖𝑔ℎ);

10 // Dual-Exploration for BG mb

11 for𝑚𝑏 ∈ 𝐵𝐺 do
12 if 𝑝′ ∼ U < 𝑝 ∧ 𝑒𝑚[𝑖, 𝑗] ≥ 𝜏𝑏𝑔 then
13 𝑝𝑟𝑜𝑥𝑦_𝑒𝑚[𝑖, 𝑗] ← E (𝑙𝑜𝑤, 𝑒𝑚[𝑖, 𝑗]);
14 else
15 𝑝𝑟𝑜𝑥𝑦_𝑒𝑚[𝑖, 𝑗] ← 𝑝𝑟𝑜𝑥𝑦_𝑒𝑚[𝑖, 𝑗] − 1;

16 𝑙𝑜𝑠𝑠1←| 𝐴𝑐𝑐𝑐 −𝐴𝑐𝑐𝑟 |;
17 𝑙𝑜𝑠𝑠2← 𝐶𝐸 (𝑒𝑚, 𝑝𝑟𝑜𝑥𝑦_𝑒𝑚) · 𝑝𝑒𝑛𝑎𝑙𝑡𝑦;
18 𝑙𝑜𝑠𝑠 ← 𝜆1 · 𝑙𝑜𝑠𝑠1 + 𝜆2 · 𝑙𝑜𝑠𝑠2;
19 Update 𝐸𝑀 ;
20 decay 𝑝;
21 until accuracy requirement not met;

tracking, pose estimation). Even in the absence of ground-truth
boxes, pseudo-RoIs can be extracted using any pretrained object
detectors, making the approach practical and generalizable. The
final emphasis decisions are not hardcoded by region type but are
supervised by the downstream task performance. As shown in Algo-
rithm 2, the EA model iteratively refines its emphasis map based on
proxy thresholds and region-specific sampling, while a combined
loss ensures the learned policy preserves task accuracy 4 . We
refer to Appendix B for the theoretical justification of RER.

6 EVALUATION
We evaluate How2Compress with a comprehensive real-world eval-
uation across 1) diverse edge devices, 2) varying content dynamics,
3) all baseline categories and 4) thorough ablations, revealing the
following key findings:

1) How2Compress is compression-efficient. It achieves up to
50.4% bitrate reduction and up to 3.01× improvement over base-
lines without compromising accuracy by preserving task-relevant
structure and discarding redundant detail (§6.2.1).

2) How2Compress is lightweight and scalable. Its pipelined de-
sign interleaves QP assignment and encoding, keeping latency un-
der 6 ms per 1080p frame and enabling real-time performance on
resource-constrained devices (§6.2.2).

3) How2Compress is robust and generalizable. Region-aware
Emphasis Routing adapts across backbones, downstream models,
and hyperparameters, enabling stable convergence and effective
navigation of the fine-grained emphasis decision space (§6.3).

6.1 Experimental Setup
Task and Datasets. We evaluate analytical accuracy across three
representative tasks: object detection, multi-object tracking, and
keypoint detection. We mainly report YOLOv8-X [30] for detection
and tracking, and YOLOv8-Pose for keypoint estimation. Experi-
ments are conducted on the MOT17 [40], NVIDIA AI City [57], and
VisDrone [73] datasets.
Implementation. We adopt two H.264 codec implementations:
Nvidia Video SDK [8] and FFMPEG with libx264 [61]. Nvidia Video
SDK support Advanced Emphasis Map feature [10], which provides
five emphasis levels to adjust quality at the macroblock level. From
our empirical observations, setting a base QP of 45 and a mini-
mum QP of 30 aligns Nvidia’s five emphasis levels approximately
to libx264 QP values of [45, 43, 37, 34, 30]. We adopt this empirical
alignment to unify the behavior of both implementations. Note that
How2Compress is a plug-and-play module that is agnostic to spe-
cific codec implementations. We utilize Nvidia Video SDK mainly
for accelerated video encoding during training, while deploying
libx264 for evaluation to ensure robust and practical performance
across diverse edge devices. Additional details are in Appendix A.2.
Evaluation Metrics. We evaluate performance across four dimen-
sions: 1) computational cost, measured in MACs per pixel [7], 2)
latency overhead, 3) bitrate savings and 4) training efficiency. Accu-
racy is measured by standard task-specific metrics: mAP for object
detection, MOTA/MOTP/IDF1 for tracking, and OKS, PCK@0.2, and
PCK@0.5 for keypoint detection. In scenarios where ground-truth
annotations are unavailable, we treat results obtained on the raw
(uncompressed) video as the reference baseline.
Training Details. Refer to Appendix A.6.
Baselines.We benchmark How2Compress with three categories
of methods. 1)When2Compress: We adapt all methods to a frame-
level QP assignment approach, while other video configurations
(e.g., resolution, framerate) remain orthogonal and can serve as
complementary optimizations. 2) Where2Compress: AccMPEG is
the state-of-the-art method which directly assign binary QP con-
figurations to distinguished (non)-informative regions. 3) H.264
Adaptive Quantization mode: A human-centric fine-grained QP as-
signment mechanism. In our experiments, for When2Compress, we
exhaustively search for the minimum frame-level QP that satisfies
the accuracy requirement. For Where2Compress, we use the SOTA
AccMPEG [15]. For H.264 AQ mode, we adopt the variance mode,
which dynamically adjusts the QP based on the variance of mac-
roblocks to improve SSIM [53]. For all other advanced codecs (i.e.,
H.265, VP9, H.266 and AV1), we use their most practical configura-
tions as recommended for real-world deployment (Appendix C).

6.2 Evaluation Results
6.2.1 Better Bitrate Savings across Diverse Scenes. We evaluate
How2Compress across a variety of video scenes to validate its
robustness and show its consistent compression efficiency.
Bitrate Savings. As shown in Table 3, How2Compress achieves a
bitrate reduction of up to 50.4%, outperforming the baseline meth-
ods by as much as 3.01×. Figure 6a further shows that, when paired
with vanilla H.264, How2Compress matches H.265 (HEVC) [49]
and surpasses advanced codecs like VP9 [22], H.266 (VVC) [59],
and AV1 [18]. We integrate How2Compress with H.264 due to its
widespread adoption in edge video analytics scenarios. Since it only
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Table 3: Bitrate (Mbps) comparison over MOT, Nvidia AI City, and VisDrone datasets. The accuracy drop remains within 2% for
detection and tracking tasks, and within 5% for keypoint detection. Bold/Red highlights the best compression performance.
Values indicate the second-best compression.

Method
Multiple Object Tracking [40] Nvidia AI City [57] VisDrone [73]

1702 1704 1709 1710 1711 1713 S01 S02 S03 086 117 137 182 268 305 339

Frame-Level (baseline)

Uniform QP [62, 69]
(When2Compress) 4.076 1.646 3.986 5.027 5.117 3.711 3.323 4.313 7.439 4.27 3.59 5.53 8.52 9.08 3.81 2.52

Macroblock-Level

AccMPEG∗ [15]
(Where2Compress)

3.354
(17.7%↓)

1.569
(4.7%↓)

3.622
(9.1%↓)

4.518
(10.1%↓)

4.469
(12.7%↓)

3.300
(11.1%↓)

2.707
(18.5%↓)

3.446
(20.1%↓)

6.457
(13.2%↓)

3.61
(15.5%↓)

3.02
(15.9%↓)

4.66
(15.7%↓)

7.13
(16.3%↓)

7.21
(20.6%↓)

3.31
(13.1%↓)

2.14
(15.1%↓)

Adaptive Quantization∗ [9, 53]
(Codec AQ)

2.914
(28.5%↓)

1.362
(17.3%↓)

3.258
(18.3%↓)

3.878
(22.9%↓)

4.101
(19.9%↓)

3.144
(15.3%↓)

2.971
(10.6%↓)

3.912
(9.3%↓)

6.662
(10.4%↓)

2.91
(31.9%↓)

2.92
(18.7%↓)

3.72
(32.7%↓)

5.88
(31.0%↓)

4.64
(48.9%↓)

3.09
(18.9%↓)

2.06
(18.3%↓)

How2Compress
(Machine-centric fine-grained)

2.023
(50.4%↓)

1.388
(15.7%↓)

2.943
(26.2%↓)

3.469
(31.0%↓)

3.488
(31.8%↓)

2.759
(25.7%↓)

2.202
(33.7%↓)

3.182
(26.2%↓)

4.475
(39.8%↓)

2.53
(40.7%↓)

2.30
(35.9%↓)

3.39
(38.7%↓)

4.38
(48.6%↓)

5.47
(39.8%↓)

2.25
(40.9%↓)

1.60
(36.5%↓)

𝛿 bitrate saving
over second-best 1.77× 0.91× 1.43× 1.35× 1.60× 1.68× 1.82× 1.30× 3.01× 1.28× 1.91× 1.18× 1.57× 0.81× 2.16× 1.99×

Table 4: Post-compression SSIM comparisons ofMOT dataset.

Method 1702 1704 1709 1710 1711 1713

H.264 AQ [17] 0.981 0.983 0.971 0.984 0.982 0.985
AccMPEG [15] 0.945 0.949 0.900 0.948 0.930 0.930
How2Compress 0.907 0.948 0.871 0.939 0.919 0.928

(a) End-to-end video encoding latency & bitrate (b) Computational overhead of EA model

Figure 6: (a) E2E video encoding latency and bitrate com-
parison of advanced codecs. (b) Computational resource and
latency overhead of EA model.

refines codec’s QP assignment, integrating it with more advanced
codecs is expected to yield even greater compression gains.
Structural and Textural Information Preservation. The pri-
mary objective of How2Compress is to eliminate redundant struc-
tural and textural information that does not affect the performance
of the detection task. As presented in Table 4, How2Compress
yields a lower SSIM compared to AccMPEG [15] and the codec’s
AQ while achieving comparable accuracy. This result indicates
that How2Compress more effectively retains the essential struc-
tural features required by the downstream model while discarding
non-essential details, thereby optimizing bit allocation for accuracy-
critical macroblocks.

6.2.2 Overhead. We evaluate it across heterogeneous devices to
assess its scalability and suitability for real-world deployment.
Computational Latency Overhead. In standard video analyt-
ics pipelines, cameras typically operate at 30 frames per second
(fps), resulting in an inter-frame interval of approximately 33.3 mil-
liseconds. How2Compress is explicitly implemented to interleave
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Figure 7: QP allocationheatmaps for differentmethods across
macroblocks. (zoom in for better visualization.)
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Figure 8: Ablation study on (a) Different Emphasis Assign-
ment Model backbones. (b) Different detection backends. (c)
Different execution intervals.

emphasis assignment within this interval. This interleaved architec-
ture enables emphasis assignment decision-making and encoding
to be performed in parallel with frame acquisition, thereby amor-
tizing additional latency overhead. As shown in Fig. 6, integrating
with H.264, our framework incurs no more than 6 milliseconds of
latency per frame in average. This is lower than that of advanced
codecs while achieving superior bitrate savings.
Computational Resource Overhead. As shown in Fig. 6b, our
How2Compress requires only up to 7.26 GFLOPS (Floating Point
Operations per Second) and 3.58 GMACs (Multiply-Add Operations
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Table 5: Effect of exploration probability decay and RER
mechanism. gray indicates accuracy deviation ≥ 10%.

Probability Decay
Method Perf∗ 0.1 0.15 0.2 0.25 0.3

How2Compress
(w/ RER)

Comp† 1× 0.98× 0.99× 0.96× 0.97×
Time‡ 1× 1× 1.3× 1.6× 1.6×

How2Compress
(w/o RER)

Comp† 0.83× 0.87× 0.81× 0.83× 0.88×
Time‡ 2× 2× 2× 2× 2×

∗ Perf: performance metric category.
† Comp: bitrate after compression (normalized).
‡ Time: # epochs to convergence (normalized).

per Second) when processing 1080p video input. The per-pixel com-
putational cost is limited to 1726MACs, which is significantly below
the hard constraint of 2000 MACs per pixel for mobile platforms [7].

6.2.3 Emphasis Assignment In-depth Analysis. In this case study,
we compare the quality assignment strategies of different methods
and present qualitative results that highlight the advantages of
How2Compress. As shown in Fig. 7,we visualize the QP allocation
on a sampled I-frame. Figure 7b shows the QP allocation of the stan-
dard H.264 codec using the AQ variance mode [53], which employs
a conservative adjustment strategy designed to preserve human
visual perception. Figure 7c illustrates the allocation pattern of
Where2Compress, which primarily lowers the quality in non-object
regions. In contrast, Fig. 7d demonstrates that How2Compress not
only identifies where to compress but also determines how much
compression each macroblock can tolerate. This fine-grained and
adaptive strategy leads to higher compression efficiency without
sacrificing detection accuracy. Additional analysis of Table 3 and Ta-
ble 4, along with qualitative results, is provided in Appendix F & G.3.

6.3 Ablation Study
We validate the effectiveness of our key contribution, RER, by ab-
lating How2Compress under four settings: 1) different Emphasis
Assignment Model backbones, 2) detection backends, 3) execution
intervals, and 4) with vs. without RER.
Backbone-agnostic. As shown in Fig. 8a, How2Compress consis-
tently captures macroblock importance across different backbones,
validating that RER generalizes well and is agnostic to the choice
of Emphasis Assignment Model architecture.
Backend-agnostic. We pretrain the Emphasis Assignment Model
and evaluate the accuracy on different object detectors (i.e., DETR [74]
and YOLOv5 [31]) without retraining EA model. As illustrated in
Fig. 8b, How2Compress maintains high detection accuracy across
backends, suggesting the generalizability of using the proxy empha-
sis target as a proxy backend-agnostic supervision signal.
Adaptive Temporal Execution.Video streams often exhibit strong
temporal coherence, especially in slow-motion scenarios. We lever-
age this property by selectively recomputing the emphasis assign-
ment at adaptive intervals. This strategy aligns with the principle
behind When2Compress and can be viewed as a complementary
mechanism. As shown in Fig. 8c, in slow-motion scenarios such as
those in MOT datasets, increasing the execution interval (≤ 5) does
not significantly degrade accuracy.

Effect of RER. Table 5 shows that removing RER and only use
proxy emphasis target leads to a significant drop in accuracy (≥ 10%),
despite achieving higher compression via fine-grained QP assign-
ment. This is because without RER, the model fails to emphasize
critical regions thereby treating all macroblocks equally. This results
in the loss of informative regional features. Moreover, RER proves
robust to changes in the exploration probability decay schedule,
indicating that it is stable and hyperparameter-insensitive.

7 DISCUSSION
Generalization to Other Tasks. Although the EA model is pre-
trained on detection, it generalizes well to tracking (within 2% ac-
curacy drop) and keypoint detection (within 5%), due to the shared
focus on foreground regions. Quantitative results are provided in
Appendix G.1.
Generalization to Other Blockbased Codecs. A wide range
of widely adopted video codecs, including H.264 [61], H.265 [49],
VP8 [44], VP9 [22], H.266 [2] and AV1 [18], rely on blockbased
compression algorithms. How2Compress is inherently compatible
with these codecs, as it does not alter the fundamental encoding
process but instead refines the quality assignment strategy. We
provide the implementation examples in Appendix H.

8 CONCLUSION
We present How2Compress, a novel plug-and-play module that
enhances video compression for analytics through fine-grained,
macroblock-level quality assignment. It dynamically allocates the
minimum necessary quality to each macroblock via a progres-
sive, self-guided Region-aware Emphasis Routing mechanism. In-
tegrated with the H.264 codec, How2Compress achieves up to
50.4% bitrate savings and outperforms baselines by up to 3.01×, all
while preserving task performance. Extensive evaluations prove
that How2Compress is lightweight, backbone-agnostic, backend-
agnostic, and training efficient, making it both practical and scalable
for real world deployment in edge video analytics systems.
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A ARTIFACTS
To ensure full reproducibility of our experiments, we provide both
the source code and the complete software environment. The source
code is available at https://github.com/wyhallenwu/how2compress.
Additionally, we provide a Docker image, available at dockerhub
https://hub.docker.com/r/wuyuheng/how2compress, which con-
tains all necessary dependencies, and scripts for reproducing our
results.

A.1 Hardware
How2Compress is trained on a compute cluster and evaluated on
real-world deployable edge devices.

The compute cluster used for training is configured as follows:

• CPU: Dual Intel(R) Xeon(R) Silver 4210R @ 2.40GHz
• GPU: 4× NVIDIA RTX 3090 (only 3 GPUs are used due to

limitations of the Nvidia Video Codec)
• Memory: 192 GB RAM
• Cuda: CUDA 12.6 and Driver 560.28.03

For edge deployment evaluation, we use the NVIDIA Jetson Orin
Nano 4GB. Detailed specifications for this device can be found at:
https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-orin/.

A.2 Software
The implementation of H.264 used in our work is a customized ver-
sion of the libx264 encoder that supports macroblock-level Quan-
tization Parameter (QP) assignment. This customized encoder is
built upon the repository available at https://github.com/Alex-q-
z/myh264. We use FFMPEG [17] version 3.4.8 and libx264 version
0.163.x (paired with libswscale version 4.8.100).

To accelerate training, we utilize the NVIDIA Video Codec SDK
v11.0.10, which supports GPU-accelerated video encoding and in-
cludes an Emphasis Map feature. Detailed documentation is avail-
able at: https://docs.nvidia.com/video-technologies/video-codec-
sdk/11.1/nvenc-video-encoder-api-prog-guide/index.html#emphasis-
map. Although the SDK provides five emphasis levels, their behav-
ior differs slightly from that of libx264. Through extensive empirical
testing, we determine that, when using a base QP of 45 and a mini-
mum QP of 30, these emphasis levels approximately correspond to
effective QP values of [45, 43, 37, 34, 30].

The compiled binary tools used in our experiments are included
in the repository. For completeness, we also evaluate the encoder
without the use of the Emphasis Map feature.

A.3 Datasets
How2Compress is evaluated on a large-scale collection of diverse,
real-world edge video stream datasets.

Multiple Object Tracking Benchmark. The Multiple Object
Tracking 2017 (MOT17) dataset is a widely used benchmark in
the computer vision community, particularly for evaluating multi-
object tracking algorithms. It consists of seven distinct video se-
quences recorded in both indoor and outdoor public environments,
with a primary focus on pedestrian tracking. Each sequence is di-
vided into training and testing subsets, enabling comprehensive
algorithm development and evaluation under diverse real-world
conditions. The dataset poses various challenges such as varying
crowd densities, illumination changes, and camera motion. In total,
MOT17 comprises 15,948 frames, corresponding to approximately
645 seconds (or 10.75 minutes) of video data. Details are available
at https://motchallenge.net/data/MOT17Det/.
NVIDIA AI City Challenge.We primarily utilize the dataset from
the 2021 edition of the NVIDIA AI City Challenge, a large-scale ur-
ban traffic video benchmark. This dataset comprises approximately
9 hours of video footage captured from 20 distinct urban locations,
including single-direction intersection approaches, full intersec-
tions, highway segments, and city streets. The dataset reflects a
broad range of environmental conditions such as different times of
day (e.g., dawn). Details are available at https://www.aicitychallenge.
org/2021-data-and-evaluation/.
VisDrone. While the previous two datasets utilize static cameras,
the VisDrone dataset [73] features cameras mounted on drones,
thereby capturing more dynamic scenes and diverse visual content.
This enables evaluation under more realistic and challenging con-
ditions involving camera motion. For further details, please refer
to the official repository at https://github.com/VisDrone/VisDrone-
Dataset.

A.4 Downstream Models
We employ three representative object detectors in our evaluation:
YOLOv5 [31], YOLOv8 [30], and DETR [74]. These models span
both one-stage convolutional architectures and transformer-based
paradigms, offering a comprehensive basis for assessing the gener-
alization of our framework across diverse detector designs.

Specifically, we fine-tune YOLOv5 and YOLOv8 on the two
datasets introduced above using high-quality video frames (en-
coded with a Quantization Parameter of 25) to establish strong
baseline detection performance. During the training and evalua-
tion of our compression framework, these fine-tuned detectors are
kept fixed (frozen), while input frames are re-encoded at lower
quality levels using various baseline and proposed methods. Our
objective is to maximize compression efficiency while minimizing
any degradation in detection accuracy with respect to these fixed
detectors.

For pose estimation tasks, we employ various versions of YOLO-
Pose provided by Ultralytics, and for tracking, we utilize their cor-
responding tracking models. We primarily focus on detection and
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https://docs.nvidia.com/video-technologies/video-codec-sdk/11.1/nvenc-video-encoder-api-prog-guide/index.html#emphasis-map
https://motchallenge.net/data/MOT17Det/
https://www.aicitychallenge.org/2021-data-and-evaluation/
https://www.aicitychallenge.org/2021-data-and-evaluation/
https://github.com/VisDrone/VisDrone-Dataset
https://github.com/VisDrone/VisDrone-Dataset
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tracking tasks, as they represent the most widely adopted applica-
tions in real-world scenarios.

Encoding Configurations

# uniform QP (When2Compress)
ffmpeg -i <input> -c:v libx264 -qp <qp> -x264-params

aq-mode=0 <output>↩→

# AccMPEG (Where2Compress)
# qp is placeholder
# and it will load QP assignment from

<qp_matrix_file>↩→

/myh264/ffmpeg -y -i <input> -qp <useless

placeholder> -pix_fmt yuv420p <output>↩→

# Codec AQ (Codec's How2Compress)
ffmpeg -i <input> -c:v libx264 -qp <qp> -x264-params

aq-mode=<aq-mode> <output>↩→

# How2Compress (Ours)
# load QP assignment from <qp_matrix_file>
/myh264/ffmpeg -y -i <input> -qp <useless

placeholder> -pix_fmt yuv420p <output>↩→

# x265
ffmpeg -benchmark -framerate 30 -i <input> -c:v

libx265 -tune zerolatency -preset veryfast
-x265-params "pools=1:qp=<qp>:aq-mode=<mode>"
-threads 1 <output>

↩→

↩→

↩→

# VP9
ffmpeg -benchmark -framerate 30 -i <input> -c:v

libvpx-vp9 -crf <config> -deadline realtime
-threads 1 <output>

↩→

↩→

# VVC encoding
ffmpeg -benchmark -framerate 30 -i <input> -c:v

libvvenc -preset 0 -qp <qp> -pix_fmt yuv420p
-threads 1 <output>

↩→

↩→

# AV1 encoding
ffmpeg -benchmark -framerate 30 -i <input> -c:v

libaom-av1 -crf <config> -b:v 0 -cpu-used 4
-usage realtime -row-mt 1 -threads 1 -g 30
-pix_fmt yuv420p <output>

↩→

↩→

↩→

A.5 Emphasis Assignment Model
Implementation

It is important to note that How2Compress is not tied to a specific
backbone architecture. Our core contribution lies in the proposed
Region-aware Emphasis Routing mechanism, which efficiently
guides fine-grained macroblock-level QP assignment. The main
results reported in the paper are based on the MobileViTv2 back-
bone, and we conduct ablation studies with alternative backbones
to demonstrate the robustness and generality of our approach.

For the Emphasis Assignment model, we implement a prediction
head on top of MobileViTv2, SegFormer, or DeepLabV3 backbones.
The head consists of a single Conv2D layer that produces a proba-
bility distribution of shape (𝐵,𝐻,𝑊 , 5), where (𝐻,𝑊 ) corresponds
to the number of macroblocks, and the last dimension represents
the five discrete emphasis levels.

To accommodate the constraints of various edge devices, the
input resolution can be downsampled by a factor of 𝐷 ([1, 4]) along
both spatial dimensions. If 𝐷 > 1, the resulting low-resolution

emphasis map is then upscaled to the original resolution using
bilinear interpolation to match the macroblock grid.

A.6 Training Details
The training procedure, detailed in Algorithm 2, employs the follow-
ing default hyperparameters: the exploration probability 𝑝 starts
at 0.8 and decays by 0.1 per epoch; SSIM threshold percentiles are
set at 90% for 𝜏roi and 50% for 𝜏bg. The model is optimized using
AdamW with a CosineAnnealing learning rate schedule, decaying
from 1×10−3 to 1×10−6. The loss function is balanced with weights
𝜆1 = 10 and 𝜆2 = 5, and emphasis levels are penalized progressively
with factors [1, 1.3, 1.6, 1.9, 2.2] to discourage excessive quality
allocation.

For training and evaluation, the dataset is split into training,
validation, and test sets using a 70:20:10 ratio. To avoid temporal
dependencies, each frame is encoded as an I-frame with its corre-
sponding predicted emphasis map during training, ensuring the
model focuses on spatial frame-level decisions. In deployment, the
video stream follows a GOP structure of 30 frames, comprising 1
I-frame and up to 3 B-frames between P-frames.

B PROOF
We provide a soft theoretical bound for convergence and compres-
sion efficiency. Let E (𝑡 ) ∈ Z𝑛𝑤×𝑛ℎ

+ denote the predicted emphasis
map at iteration 𝑡 , where each entry E (𝑡 )

𝑖, 𝑗
∈ {0, 1, . . . , 𝐾 − 1} corre-

sponds to the QP offset (i.e., emphasis level) assigned to macroblock
𝑀𝑖, 𝑗 . Let P (𝑡 ) denote the proxy emphasis target at iteration 𝑡 , ob-
tained through percentile-based PET thresholds and Region-aware
Emphasis Routing (RER). The training loss is defined as:

L (𝑡 ) = 𝜆1 · AccLoss(𝑡 ) + 𝜆2 · AlignLoss(𝑡 ) ,

where AccLoss(𝑡 ) :=
���Acc(E (𝑡 ) ) − Acc(Emax)

��� quantifies the task
performance deviation from maximum quality, and AlignLoss(𝑡 ) :=
CE(E (𝑡 ) ,P (𝑡 ) ) measures the divergence between the model output
and the proxy.
Assumptions.

(1) Proxy Improvement: The proxy P (𝑡 ) improves over time, i.e.,
CE(P (𝑡 ) , E∗) → 0 as 𝑡 → 𝑇 , where E∗ is the (unknown)
optimal emphasis map.

(2) Temporal Smoothness: For adjacent frames, macroblock as-
signments evolve slowly: ∥E (𝑡 ) − E (𝑡−1) ∥1 ≤ 𝛿 .

(3) Loss Contraction: The model learns to align with the proxy
at each round:

L (𝑡+1) ≤ L (𝑡 ) − 𝜂 · ∥E (𝑡+1) − P (𝑡 ) ∥1,

for some 𝜂 > 0.

Proposition. Under the assumptions above, for any accuracy toler-
ance 𝜏 > 0, the number of rounds 𝑇 needed to obtain an emphasis
map E (𝑇 ) satisfying���Acc(E (𝑇 ) ) − Acc(Emax)

��� ≤ 𝜏 and E[𝑅(E (𝑇 ) )] ≥ 𝑅min (𝜏),

is bounded by

𝑇 ≤ L
(0)

𝜂 · 𝜖 ,
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where 𝜖 denotes the minimal improvement in alignment per round,
and 𝑅(·) is the achieved bitrate reduction.
Interpretation. This bound shows that convergence is linear in
the initial loss and inversely proportional to the progress made in
each round. In practice, due to temporal consistency and the design
of RER, we empirically observe convergence in only 1–3 rounds.

C COMPARISONWITH ADVANCED CODECS
How2Compress is designed to be codec-agnostic, assuming the
underlying codec supports block-level quality control i.e., the abil-
ity to encode pixel blocks at varying quality levels. This includes
widely adopted codecs such as H.264 [61], H.265 [49], VP9 [22],
H.266 (VVC) [2] and AV1 [18]. In this work, we primarily use H.264
as a case study, as it remains the most prevalent video codec in edge
computing scenarios due to its widespread hardware support and de-
ployment maturity. To ensure experimental reproducibility, the en-
coding configurations used for each codec are provided in Box A.4.
All codecs were evaluated using the FFMPEG toolchain [17], with
default parameters unless otherwise specified. It is important to
note that we deliberately disable multi-threaded encoding during
our comparisons. This decision reflects a realistic edge deployment
scenario, where devices typically feature limited CPU cores (2–6
threads) and are concurrently burdened with computationally inten-
sive tasks, such as real-time video analytics or other deep learning
inference workloads.

D CONSTANT RATE FACTOR (CRF)
Some research [23, 56] leverage CRF in modern video encoders
to enable implicit macroblock-level QP adjustment. It operates by
targeting a perceptually constant visual quality across frames and
spatial regions. Internally, it modulates the QP at the macroblock
level based on content characteristics such as texture complexity,
luminance masking, and motion. Regions deemed perceptually less
sensitive (e.g., flat or low-motion areas) are assigned higher QPs,
while visually salient areas are preserved with lower QPs. This
implicit adjustment is guided by heuristics rooted in human visual
system modeling.

Despite its adaptive nature, CRF is not considered suitable for
edge video analytics scenarios. First, CRF is inherently optimized
for human visual perception rather than machine-centric tasks
such as object detection or activity recognition. Consequently, it
may prioritize quality in visually salient but analytically irrelevant
regions, while under-allocating bitrate to semantically important
areas (e.g., small moving objects). Second, the mechanism is opaque
and nondeterministic from external control. It does not expose
a clear interface for frame- or region-level quality manipulation,
making it ill-suited for latency-sensitive edge systems that require
direct and responsive QP control in reaction to scene dynamics or
detection confidence.

In contrast, offering explicit macroblock-level QP assignment
facilitates fine-grained and machine-centric quality adaptation. It
allows encoders to prioritize bitrate allocation to analytically criti-
cal regions—identified using objectness maps, motion vectors, or
model-informed saliency while compressing less relevant back-
ground areas more aggressively. This capability is particularly ben-
eficial in edge-cloud collaborative systems, where uplink bandwidth
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(a) AccMPEG QP allocation
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(b) Ours QP allocation
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Figure 9: Comparison of QP allocation between AccMPEG
and our method. AccMPEG requires careful online threshold
tuning to prevent over-allocation of high-quality regions in
object-sparse scenes.

is limited and quality-budget precision is essential to maintain de-
tection performance across a broad range of video scenes. Moreover,
such direct control improves system responsiveness, enabling real-
time adaptation to content changes and ensuring robust operation
under stringent resource constraints.

E PSNR VS. SSIM
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
Measure (SSIM) are two widely adopted metrics for evaluating
image and video quality.While both aim to quantify the degradation
introduced by lossy compression, they differ fundamentally in their
design principles and perceptual alignment.

PSNR is a pixel-wise fidelity metric that computes the loga-
rithmic ratio between the maximum possible pixel value and the
mean squared error (MSE) between the original and compressed im-
ages [24, 28]. It assumes an independent and identically distributed
error model across pixels, making it analytically convenient and
computationally efficient. However, PSNR is agnostic to spatial
correlations and human perceptual sensitivity. As a result, it often
fails to capture structural distortions or texture degradation that
are critical to downstream tasks.

In contrast, SSIM evaluates image similarity by modeling lumi-
nance, contrast, and structural information in localized regions [58].
It correlates more strongly with human visual perception by empha-
sizing structural consistency rather than absolute pixel accuracy.
Despite being originally designed for perceptual quality assessment,
SSIM better captures the degradation patterns relevant to DNN-
based video analytics, particularly in the presence of structural
artifacts and compression-induced distortions.

It is important to note that neither PSNR nor SSIM is de-
signed to measure the specific feature retention of DNNs
used in video analytics. DNNs rely not on perceptual quality
per se, but on the preservation of task-relevant features. In this
regard, both PSNR and SSIM may misrepresent the true impact of
compression on detection accuracy. PSNR can over-penalize visu-
ally insignificant pixel differences, while SSIM may overemphasize
structures that are perceptually relevant but semantically irrelevant
to the analytical models.

Nevertheless, among the two, SSIM remains more adoptable in
analytics-aware compression systems. Its emphasis on structural
preservation provides a better proxy for semantic fidelity, especially
in scenarios where object shapes and boundaries are critical. Em-
pirically, in our experiments, SSIM tends to correlate more strongly
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than PSNR with downstream performance metrics such as mean
Average Precision (mAP) in object detection tasks. Furthermore,
SSIM’s localized and differentiable structure [24] makes it useful for
guiding encoder decisions or supervising quality estimation models
when model-in-the-loop feedback is computationally expensive or
unavailable.

F FURTHER IN-DEPTH ANALYSIS
F.1 Disentangling optimization of streaming

and inference
As discussed in §2.2, beyond controlling video quality, there exist
several alternative strategies to reduce video bitrate, including:
1) filtering redundant frames (temporal redundancy), 2) reducing
video resolution (spatial downsampling), and 3) cropping regions
of interest (RoI) for targeted inference.

Differentiate from them, How2Compress focuses exclusively
on adjusting quality within each frame, i.e., exploring the quality
dimension at a fine-grained level. This design choice offers three
primary advantages:

✓ Modularity and decoupled optimization:How2Compress
is a plug-and-play module that decouples the optimization
of the frontend (edge device) from the backend (edge clus-
ter). In comparison, strategies such as 2) resolution reduc-
tion and 3) RoI cropping often generate video frames of
varying resolutions. To maintain high throughput in down-
stream inference (e.g., with batch processing) such variabil-
ity necessitates joint optimization between edge devices
and analytical backends. In contrast, How2Compress pre-
serves consistent frame structure, simplifying deployment
and is compatible with backend inference optimization.

✓ Complementarity: How2Compress is orthogonal to the
above methods. It can be seamlessly integrated with 1), 2),
and 3) to further enhance bitrate reduction, offering additive
benefits when combined with existing system optimization.

✓ Effectiveness in densely populated scenes: In scenarios
where frames contain numerous objects, spatial pruning
methods (e.g., resolution reduction or RoI cropping) often
become less effective, as most regions are deemed impor-
tant. In such cases, How2Compress remains effective by
adaptively reducing information along the quality dimen-
sion, selectively lowering the fidelity of less critical regions
within crowded frames.

F.2 Comparison with AccMPEG and Its
Potential Extensions

Our proposed framework, How2Compress, is fundamentally distinct
from AccMPEG in both methodological philosophy and implemen-
tation strategy. Below, we outline two core differences that enable
How2Compress to achieve better scalability, generalization, and
runtime efficiency compared to AccMPEG.

(1) Model/Task Independence. AccMPEG requires extensive
offline gradient profiling for each specific model and task to
estimate the relative importance of individual macroblocks
(MBs) for downstream performance. This process involves
backpropagating gradients from the downstream task (e.g.,

YOLO DETR

Figure 10: Macroblocks identified as important by AccMPEG
using accuracy gradients from different detection models.
The variation indicates model-specific dependence, necessi-
tating re-profiling for each detector.

object detection or tracking) through the video processing
pipeline, which is computationally expensive and must be
repeated for every newmodel, dataset, or task configuration.
Consequently, AccMPEG’s applicability is limited to fixed,
pre-profiled scenarios.
In contrast, our framework eliminates the need for any
downstream task gradients by leveraging structural cues
(e.g., edges, textures, and spatial layouts) that are inherently
present in video content. These cues serve as a general and
task-agnostic signal to guide quality allocation decisions.
As a result, How2Compress is naturallymodel- and task-
independent, allowing it to generalize seamlessly across
various analytical models and tasks without re-profiling.
This advantage is especially valuable in real-world edge
deployment scenarios where the underlying models may
change over time or differ across devices.

(2) Global Correlation Modeling. Another key distinction
lies in how inter-macroblock relationships are handled.
AccMPEG uses AccGrad, a heuristic metric that evaluates
each macroblock’s contribution to performance in isolation,
based solely on the magnitude of its associated gradient.
This per-MB analysis neglects the complex correlations
and contextual dependencies between macroblocks, such
as object continuity, motion coherence, or scene layout
consistency.
By contrast, our framework adopts a learning-based strat-
egy that models global correlations across macroblocks.
Rather than assigning quality in a greedy or local manner,
How2Compress employs a self-supervised, attention-guided
mechanism that captures long-range dependencies. This en-
ables the system to allocate bitrate in a globally optimized
fashion, taking into account the overall impact on scene
understanding and task accuracy.

On Potential Extensions to AccMPEG. In an attempt to reduce
AccMPEG’s complexity, one may consider the following two exten-
sions that discretize gradients into QP bins:

• (Ext@1): Fixed Scalar Thresholds. One straightforward
extension involves defining a set of scalar thresholds to par-
tition the gradient values into discrete QP bins. For instance,
using 5 equally spaced thresholds across the observed gra-
dient range [min,max], one could assign coarser or finer
compression quality per macroblock accordingly. However,
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Table 6: Benchmark Results Across Different Hardware Platforms (Mean Time in ms)

RTX3090 Orin Nano1 Xavier NX1 AGX Xavier1
NumPy Numba PyTorch NumPy Numba PyTorch NumPy Numba PyTorch NumPy Numba PyTorch

480 × 640 (480p) 18.06 24.72 3.47 24.96 16.41 5.61 37.13 25.98 7.96 26.10 15.31 15.79
720 × 1280 (720p) 54.76 55.61 8.81 70.77 41.89 13.60 110.04 65.76 14.21 72.81 45.39 10.64
900 × 1600 (900p) 89.05 59.77 6.83 115.76 70.86 19.74 161.78 68.37 19.68 102.76 49.20 15.14
1080 × 1920 (1080p) 129.45 73.55 7.13 167.92 103.00 27.43 230.56 99.13 19.22 148.38 63.38 22.00

Table 7: Benchmark Results Across Different Hardware Platforms (Standard Deviation in ms)

RTX3090 Orin Nano1 Xavier NX1 AGX Xavier1
NumPy Numba PyTorch NumPy Numba PyTorch NumPy Numba PyTorch NumPy Numba PyTorch

480 × 640 (480p) 4.42 8.98 1.23 0.10 0.21 0.12 1.06 1.90 1.14 3.14 1.71 0.78
720 × 1280 (720p) 1.92 5.59 1.38 0.09 0.16 0.18 2.46 14.72 0.23 2.05 12.83 0.49
900 × 1600 (900p) 1.20 6.18 2.14 0.08 0.42 0.08 1.72 1.30 5.33 2.36 4.16 1.13
1080 × 1920 (1080p) 2.94 3.91 0.54 0.14 0.21 0.07 1.16 1.09 0.39 2.36 0.84 1.76

Table 8: Normalized Performance Comparison (Lower is Better)

RTX3090 Orin Nano1 Xavier NX1 AGX Xavier1
NumPy Numba PyTorch NumPy Numba PyTorch NumPy Numba PyTorch NumPy Numba PyTorch

480 × 640 (480p) 5.2× 7.1× 1.0× 4.4× 2.9× 1.0× 4.7× 3.3× 1.0× 1.7× 1.0× 1.0×
720 × 1280 (720p) 6.2× 6.3× 1.0× 5.2× 3.1× 1.0× 7.7× 4.6× 1.0× 6.8× 4.3× 1.0×
900 × 1600 (900p) 13.0× 8.8× 1.0× 5.9× 3.6× 1.0× 8.2× 3.5× 1.0× 6.8× 3.2× 1.0×
1080 × 1920 (1080p) 18.2× 10.3× 1.0× 6.1× 3.8× 1.0× 12.0× 5.2× 1.0× 6.7× 2.9× 1.0×

such an approach suffers from severe practical limitations:
scalar thresholds must be hand-tuned for each scene, model,
and task. Without careful tuning, the bin boundaries may
poorly reflect the actual semantic importance of content
regions.
To empirically validate this limitation, we implemented a
variant of AccMPEG using 5-bin discretization over the per-
scene gradient range. The resulting bitrate performance
(measured in Megabits) is reported below for the MOT17
and AI CITY datasets:

Dataset Bitrate (Mbits)

MOT17 [2.732, 1.441, 3.312, 4.132, 3.818, 2.918]
AI CITY [2.544, 3.289, 5.452]

These results demonstrate clear performance degradation
when compared to our method, which uses a learned, soft-
assignment strategy without requiring manual threshold
tuning.

• (Ext@2): Quantile-Based Thresholds. An alternative
approach replaces fixed scalar thresholds with quantiles
derived from the empirical distribution of gradients. This
method computes percentiles (e.g., 20th, 40th, 60th, and
80th) to dynamically form QP bins, adapting to the actual
gradient distribution shape rather than relying on arbitrary
fixed boundaries. While this strategy offers improved the-
oretical robustness by naturally accounting for gradient

distribution characteristics, it introduces prohibitive com-
putational overhead that severely limits practical deploy-
ment. Our empirical evaluation on the Jetson Orin Nano
platform reveals substantial runtime penalties for quan-
tile computation per frame. As shown in our benchmark
results (Table 6), quantile computation requires 27.43 ms
when implemented using PyTorch on GPU and 103.00 ms
using CPU with Numba acceleration. These latencies repre-
sent significant bottlenecks that violate real-time process-
ing constraints essential for edge video analytics pipelines.
For context, at 30 FPS video processing, the total frame
budget is only 33.33 ms, making the quantile computation
overhead alone consume 82% of the available processing
time on GPU or exceed the frame budget by 3× on CPU.
Furthermore, the computational complexity scales poorly
with gradient tensor size, creating additional challenges for
higher resolution inputs. The overhead becomes even more
pronounced when considering that quantile computation
must be performed for every frame in the video stream, lead-
ing to cumulative performance degradation that renders
this approach impractical for real-time edge deployment
scenarios.

In summary, both proposed extensions to AccMPEG fail to meet
practical requirements: (Ext@1) lacks generality due to the need for
manual tuning, while (Ext@2) is too computationally expensive for
real-time applications. By contrast, How2Compress circumvents
both limitations by learning macroblock-level emphasis directly
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from structural content, without relying on downstream gradients
or expensive runtime operations. This enables fast, generalizable,
and efficient video compression that is well-suited for modern edge
intelligence systems.

F.3 Advantages over Codec’s Adaptive
Quantization

An interesting observation, which may initially appear paradoxical,
arises from Table 3 and Fig. 7: AccMPEG consistently outperforms
the codec’s AQ across all scenarios of the NVIDIA AI City dataset,
yet underperforms compared to AQ on the MOT17 dataset. In the
QP assignment heatmap, the QP range produced by the codec’s AQ
([30, 35]) is noticeably narrower than that of AccMPEG ([30, 45]).
Nonetheless, codec AQ achieves superior compression efficiency in
MOT17. This might cause by two reasons: (1) differences in object
density across the datasets, and (2) the codec’s AQ’s more effective
exploitation of skip-mode macroblocks.

The NVIDIA AI City dataset generally exhibits low object den-
sity, with most frames containing fewer than five detectable ob-
jects and many frames containing none. In such cases, AccMPEG
(Where2Compress) can efficiently assign lower quality to the ma-
jority of macroblocks, focusing quality on a sparse set of informa-
tive regions, which leads to greater compression efficiency than
the codec’s AQ. In contrast, the MOT17 dataset features a signifi-
cantly higher object density, with frequent occurrences of densely
packed targets within a frame. This necessitates a larger number of
high-quality macroblocks to maintain detection accuracy. While
AccMPEG does allocate high quality to critical regions, the codec’s
AQ often designates even more macroblocks with higher quality.
However, when AQ is enabled in the H.264 codec, it adjusts the
QP by increasing it in flat or low-activity regions. This raises the
likelihood that these regions will closely match their motion predic-
tions, resulting in negligible residuals. Consequently, the encoder
can exploit skip mode, which omits residual coding altogether and
significantly reduces the number of bits required. This leads to
increased sparsity, which in turn enhances the efficiency of entropy
coding, thereby lowering the bitrate even if the QP is relatively low.

Our proposed method, How2Compress, consistently outper-
forms both AccMPEG and the codec’s AQ across datasets in most
scenarios, due to its capacity for more aggressive, fine-grained, and
region-aware QP modulation. Unlike traditional heuristic-based
approaches or coarse quantization control, How2Compress dynami-
cally allocates quality at the macroblock level based on the localized
visual importance of regions. This allows it to preserve object-
relevant areas with higher fidelity while aggressively compressing
uninformative background regions. As a result, it can also lever-
age the benefits of skip-mode macroblocks and achieves superior
accuracy–bitrate trade-offs across diverse video scenarios.

G FURTHER RESULTS
G.1 Generalize to Other Tasks
See Table 9 and Table 10.

Table 9: Pose estimation performance comparison. The table
presents evaluation results using standard pose estimation
metrics: Object Keypoint Similarity (OKS), Percentage of Cor-
rect Keypoints at 0.2 threshold (PCK@0.2), and Percentage
of Correct Keypoints at 0.5 threshold (PCK@0.5).

Pose Estimation (OKS / PCK@0.2 / PCK@0.5)

Sequence AQ ACCMPEG Ours

MOT17-02 0.956 / 0.862 / 0.940 0.954 / 0.854 / 0.936 0.947 / 0.839 / 0.924

MOT17-04 0.968 / 0.921 / 0.966 0.948 / 0.894 / 0.951 0.939 / 0.880 / 0.943

MOT17-09 0.970 / 0.900 / 0.948 0.964 / 0.892 / 0.944 0.954 / 0.886 / 0.937

MOT17-10 0.927 / 0.898 / 0.929 0.926 / 0.895 / 0.932 0.919 / 0.886 / 0.934

MOT17-11 0.975 / 0.948 / 0.965 0.975 / 0.948 / 0.966 0.976 / 0.952 / 0.973

MOT17-13 0.950 / 0.893 / 0.946 0.933 / 0.870 / 0.934 0.935 / 0.875 / 0.941

Table 10:Multi-object tracking performance comparison. The
table presents evaluation results using standard trackingmet-
rics: Multiple Object Tracking Accuracy (MOTA), Multiple
Object Tracking Precision (MOTP), and ID F1 Score (IDF1).

Multi-Object Tracking (MOTA / MOTP / IDF1)

Sequence AQ ACCMPEG Ours

MOT17-02 0.910 / 0.949 / 0.938 0.882 / 0.949 / 0.934 0.891 / 0.941 / 0.927

MOT17-04 0.982 / 0.971 / 0.989 0.983 / 0.962 / 0.985 0.982 / 0.961 / 0.982

MOT17-09 0.978 / 0.977 / 0.982 0.974 / 0.971 / 0.976 0.972 / 0.967 / 0.964

MOT17-10 0.930 / 0.955 / 0.950 0.909 / 0.951 / 0.942 0.909 / 0.944 / 0.935

MOT17-11 0.970 / 0.973 / 0.972 0.960 / 0.965 / 0.961 0.965 / 0.963 / 0.945

MOT17-13 0.928 / 0.950 / 0.941 0.923 / 0.943 / 0.932 0.919 / 0.949 / 0.911
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Figure 11: Computational overhead across varying input res-
olutions and device power profiles

G.2 Overhead of Different Resolution Input
We evaluate How2Compress across different input resolutions
(1080p, 900p, 720p, and 480p). As shown in Fig. 11, the model re-
quires only 7.21 GFLOPS even for 1080p videos, rendering it suitable
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for resource-constrained edge devices. The model exhibits low com-
putational complexity, with only 3.56 GMACs. In comparison to the
lightweight detection model YOLOV5-s [31], the Emphasis Assign-
ment model uses just 0.4× the resources, highlighting its efficient
across different platforms.

G.3 Qualitative Result
See Fig. 12.

G.4 Lower SSIM means Better Compression?
We elaborate the rationale in detail in Appendix D. In our frame-
work, lower SSIM arises primarily from aggressive compression of
task-irrelevant regions (e.g., background), while preserving infor-
mation in task-relevant areas (e.g., object boundaries or foreground
objects). This localized degradation leads to lower global SSIM, yet
the information critical to the downstream task is retained. Because
most vision models depend heavily on structural cues (e.g., edges,
contours), this selective compression often maintains (if not im-
proves) task accuracy. Thus, in our context, lower SSIM is a sign of
more efficient task-aware compression

Figure 12 presents representative visualizations of frames from
the MOT17 dataset after compression using different methods.
These examples qualitatively illustrate how each method affects
spatial quality and the allocation of compression across regions.

Our proposed method introduces more visually apparent arti-
facts and pushes a larger proportion of macroblocks toward lower
quality levels. Despite this aggressive compression strategy, the
object detection accuracy is well preserved, as demonstrated in
Fig. 13. This result underscores the effectiveness of our framework
in making precise, content-aware decisions regarding both the spa-
tial distribution and magnitude of compression.

H GENERALIZATION
In the main paper, we implemented How2Compress using the
H.264 codec, focusing on two of its most widely adopted implemen-
tations: libx264[61] and the NVIDIA Video SDK[8]. Importantly,
How2Compress is not inherently tied to H.264, as it operates in-
dependently of the core encoding logic and instead focuses on
enhancing the codec’s quality assignment strategy. In this section,
we first review the compression mechanisms of modern codecs,
then illustrate how How2Compress can be seamlessly integrated
into each of them with minimal modification.

H.1 compression mechanism of different codecs
Modern video codecs (i.e., H.265 (HEVC)[49], VP9[22], AV1 [18], and
H.266 (VVC)) have evolved significantly from the rigid, fixed-block
architectures of earlier standards. These codecs employ increasingly
flexible and content-adaptive partitioning strategies that enable
more efficient encoding of diverse visual scenes.

H.264/AVC typically uses a fixed 16 × 16 macroblock structure
and follows a relatively rigid pipeline of intra/inter prediction, trans-
formation, quantization, and entropy coding. While effective in its
time, its limited spatial adaptivity reduces efficiency, especially for
high-resolution or visually complex content.

H.265/HEVC introduces Coding Tree Units (CTUs) that sup-
port variable sizes up to 64 × 64. These CTUs are hierarchically

partitioned into Coding Units (CUs), Transform Units (TUs), and
Prediction Units (PUs), allowing finer spatial granularity. This de-
sign improves coding efficiency compared to H.264, particularly for
scenes with heterogeneous texture or motion.

VP9 adopts a similar superblock-based design (up to 64 × 64)
and further enhances adaptivity through variance-based adaptive
quantization (AQ) and segmentation maps. Additional features such
as tile-based parallel decoding and cyclic refresh support better
temporal robustness and hardware parallelism.

AV1 extends these ideas by supporting 128 × 128 superblocks,
multiple transform modes, and block-wise quantization control
via segmentation and delta QIndex. VVC (H.266) further advances
this trajectory with additional partitioning modes and generalized
CTU structures, maintaining high efficiency across various content
types.

Despite their advantages, the deployment of HEVC, VP9, AV1,
and VVC in real-time edge environments is limited by their com-
putational demands and the scarcity of mature, power-efficient
hardware support. In contrast, H.264 continues to offer a favorable
tradeoff between performance and efficiency. As shown in Fig. ??,
our interleaved QP assignment further reduces H.264’s encoding
latency, enabling it to achieve faster encoding while maintaining
competitive quality and bitrate.

H.2 Integration with H.265 (HEVC)
H.265 [49] supports spatially adaptive quantization via the delta
QP (dQP). Each Coding Tree Unit (CTU) is assigned a base QP, and
Coding Units (CUs) within the CTU can receive QP adjustments
through signed dQP offsets. These offsets are determined based
on visual features such as texture complexity or motion, allowing
perceptually important regions to receive finer quantization.

How2Compress naturally aligns with this architecture by gener-
ating content-aware QPmaps that can be translated into dQP values
for each CU. These values are explicitly signaled in the bitstream,
enabling precise control over spatial quality.

To implement this in practice, minor modifications to HEVC
encoders are sufficient. For example, in the x265 implementation,
How2Compress can override the QP assignment logic in the rate
control module at https://github.com/videolan/x265/blob/master/
source/encoder/frameencoder.cpp#L604. Similarly, in the reference
HEVC Test Model (HM), CU-level QP control can be integrated by
modifying https://vcgit.hhi.fraunhofer.de/jvet/HM/-/blob/master/
source/Lib/TLibEncoder/TEncCu.cpp#L1217.

H.3 Integration with H.266 (VVC)
H.266 [2], as an extension of HEVC, increases the maximum CTU
size to 128 × 128 and retains native support for delta QP-based
quantization control. Given How2Compress ’s ability to predict
per-block QP values, its integration into VVC is straightforward.

Several VVC implementations support external QPmap injection.
For example, the UVG266 encoder [54] allows custom QP assign-
ments via the –roi flag, enabling direct input of region-based QP
maps produced by How2Compress. This functionality is realized
in the codebase through fine-grained QP control logic (uvg266.h
at https://github.com/ultravideo/uvg266/blob/master/src/uvg266.
h#L418).

https://github.com/videolan/x265/blob/master/source/encoder/frameencoder.cpp#L604
https://github.com/videolan/x265/blob/master/source/encoder/frameencoder.cpp#L604
https://vcgit.hhi.fraunhofer.de/jvet/HM/-/blob/master/source/Lib/TLibEncoder/TEncCu.cpp#L1217
https://vcgit.hhi.fraunhofer.de/jvet/HM/-/blob/master/source/Lib/TLibEncoder/TEncCu.cpp#L1217
https://github.com/ultravideo/uvg266/blob/master/src/uvg266.h#L418
https://github.com/ultravideo/uvg266/blob/master/src/uvg266.h#L418
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Figure 12: Qualitative visualization of post-compression frames across all methods. (zoom in for better visualization)

Raw (before compression) AccMPEG How2Compress Raw (before compression) AccMPEG How2Compress

Raw (before compression) AccMPEG How2Compress Raw (before compression) AccMPEG How2Compress

Raw (before compression) AccMPEG How2Compress Raw (before compression) AccMPEG How2Compress

Figure 13: Qualitative visualization of compression artifacts. (Zoom in for better visualization)

Other implementations, such as VVENC [60], do not provide di-
rect support but can be adapted with minimal changes. In particular,
the rate control logic at https://github.com/fraunhoferhhi/vvenc/
blob/master/source/Lib/EncoderLib/BitAllocation.cpp#L508 can be
modified to accommodate externally specified QP values.

H.4 Integration with VP9
The VP9 codec [22], as implemented in libvpx, supports adaptive
quantization at the segment level through AQmodes. Internally, the
encoder converts QP values into qindex parameters, which control
quantization strength.

To integrate How2Compress, externally predicted QP values can
be translated to qindex equivalents and injected into the encoder
by modifying the rate control mechanism. Specifically, the quan-
tization decision logic at https://github.com/webmproject/libvpx/
blob/main/vp9/encoder/vp9_quantize.c#L185 can be extended to
reflect How2Compress ’s per-segment quality assignments.

H.5 Integration with AV1
AV1, the successor to VP9, also supports block-wise quantization
control using qindex values. How2Compress ’s predicted QP values
can be directly mapped to these indices to guide the encoder’s
decisions.

https://github.com/fraunhoferhhi/vvenc/blob/master/source/Lib/EncoderLib/BitAllocation.cpp#L508
https://github.com/fraunhoferhhi/vvenc/blob/master/source/Lib/EncoderLib/BitAllocation.cpp#L508
https://github.com/webmproject/libvpx/blob/main/vp9/encoder/vp9_quantize.c#L185
https://github.com/webmproject/libvpx/blob/main/vp9/encoder/vp9_quantize.c#L185


How2Compress: Scalable and Efficient Edge Video Analytics via Adaptive Granular Video Compression

The reference encoder libaom [18] provides mechanisms to ad-
just quantization at the block level, as defined in the AV1 specifica-
tion at https://aomediacodec.github.io/av1-spec/#quantizer-index-
delta-syntax. Practical integration can be realized by modifying the
quantization logic in at https://aomedia.googlesource.com/aom/+/
refs/tags/v3.12.0/av1/encoder/av1_quantize.c#764, allowing injec-
tion of How2Compress-generated quality signals.

I LIMITATIONS
In this section, we discuss the limitations of both the existing frame-
works and our proposed How2Compress. Additionally, we outline
promising directions for addressing these limitations, which we
leave as future work.
Marginal Compression Gains in Certain Scenes. Although
How2Compress consistently achieves notable bitrate savings with-
out sacrificing accuracy in most scenarios, it demonstrates only
marginal improvement for certain video content (e.g., as shown
in Table 3 for the MOT17-04 sequence). In such cases, the built-in
codec mechanisms may already achieve efficient compression due
to their ability to organize QP values in a way that enhances inter-
prediction and increases the use of skip mode macroblocks, thereby
improving compression efficiency. One of the key advantages of
video compression over image compression lies in the exploitation
of temporal redundancy through inter-frame prediction. In H.264,
skip mode macroblocks (i.e., inter-predicted macroblocks that omit
motion vectors and residuals) can be used when the content ex-
hibits minimal motion and negligible prediction error. However,
externally controlling QP at a fine granularity may disrupt the
codec’s internal optimization pipeline, such as motion estimation
and residual prediction, ultimately reducing the proportion of skip
mode macroblocks. We believe this issue can be mitigated by in-
troducing temporally-aware QP adjustment mechanisms, which
jointly consider visual saliency and motion consistency to align
better with the codec’s prediction model, thereby improving the
ratio of skipped macroblocks without compromising accuracy.
Unstable Bitrate Behavior in Streaming. In real-world video
streaming scenarios, especially under bandwidth-constrained or
latency-sensitive conditions, maintaining a stable and predictable bi-
trate is crucial for smooth transmission and adaptive bitrate (ABR)
control. However, external fine-grained control of QP, while ef-
fective for accuracy-aware compression, which may lead to large
fluctuations in bitrate across frames, depending on the spatial and
temporal complexity of the scene. This variability may result in
buffer underflows, unstable transmission, or degraded Quality of
Experience (QoE) in live offloading scenarios. Incorporating bitrate
regularization techniques or post-hoc rate control can help address
this issue.

https://aomediacodec.github.io/av1-spec/#quantizer-index-delta-syntax
https://aomediacodec.github.io/av1-spec/#quantizer-index-delta-syntax
https://aomedia.googlesource.com/aom/+/refs/tags/v3.12.0/av1/encoder/av1_quantize.c#764
https://aomedia.googlesource.com/aom/+/refs/tags/v3.12.0/av1/encoder/av1_quantize.c#764
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